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ABSTRACT 

The t o t a l  vaporization time of water drops i n  Leidenfrost bo i l i ng  cf3 
m 
2 
w 

with supporting p la te  ve loc i t ies  up t o  15 f t / sec  has been correlated 
with a standard deviation o f  4.5 percent. 
stagnation and Couette flow profiles. In  t h i s  paper, the  vaporiza- 
t i o n  time for a drop f i l m  boi l ing  on a moving surface is r e l a t ed  t o  
t h e  equivalent vaporization t i m e  f o r  a smaller drop placed on a 
s ta t ionary  surface.  

The ana ly t i ca l  model combines I 

INTRODUCTION 

The l i qu id  metal space power Rankine System is present ly  being 
considered as a possible auxi l ia ry  power source f o r  space applica- 
t ion .  
f'uge entrained l i qu id  droplets t o  the heated tube w a l l  t o  provide 
drople t  f r e e  vapor t o  t h e  turbine.  A t  t h e  w a l l ,  t h e  l i qu id  droplet  
undergoes film bo i l ing  which resembles the  c l a s s i c  s ta t ionary  
Leidenfrost phenomena, except that in  t h i s  case a r e l a t i v e  ve loc i ty  
e x i s t s  between t h e  drop and the  heated tube w a l l .  
considers t h e  e f f ec t  of t h i s  re la t ive  ve loc i ty  on the  vaporization 
times of  t h e  l i qu id  droplets  i n  Leidenfrost film boi l ing.  

I n  t he  m i s t  flow regime of its bo i l e r ,  s p i r a l  i n se r t s  cent r i -  

The present paper 

If l iqu id  drops are placed upon a s u f f i c i e n t l y  hot surface, 

This phenomenon is 
vapor w i l l  be generated a t  t h e  underside of t h e  drop a t  a rate adequate 
t o  support t h e  drop (see Fig. 1( a)  and ( b ) )  . 
usual ly  re fer red  t o  as s ta t ionary  Leidenfrost f i lm  'boiling. Refer- 
erence 1 considered the  Leidenfrost phenomenon on a spinning wheel 
( see  Figs. l ( c ) ,  (a ) ,  and ( 2 ) ) .  It showed t h a t  t he  ve loc i ty  of t he  
heated wheel surface had a s ignif icant  effect on t h e  vaporization 
time of t h e  drop (see Fig. 3). 

A model w i l l  be developed herein t o  predict  t he  vaporization 
time of drops on moving surfaces. 
authors '  earlier model f o r  Leidenfrost bo i l i ng  of f  of s ta t ionary  sur- 
faces (ref. 2 ) .  Table I lists t h e  pr inc ipa l  ana ly t i ca l  r e s u l t s  of 
reference 2 i n  dimensionless form f o r  a f l a t  d isk  model as pictured 
beneath t h e  table .  

This model is an extension of t h e  
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Leidenfrost bo i l ing  from s ta t ionary  surfaces has been under 
extensive study qui te  recent ly  ( refs .  1 t o  10). 
Wachters, contains a comprehensive l i t e r a t u r e  summary of some very 
ear ly ,  as w e l l  as recent, ana ly t ica l  and experimental work i n  t h i s  
area.  For t he  present paper; however, B e l l ' s  and Hoffman's d i s -  
cussion i n  references 7 and 8, and Be l l ' s  educational monograph, 
reference 9, contain per t inent  discussions of some of t h e  assump- 
t i o n s  and l imi ta t ions  of t he  s ta t ionary Leidenfrost model pre- 
sented i n  reference 2 upon which the present model is b u i l t .  

Reference 10, by 

Recently, Poppendiek e t  a l .  ( re f .  5) have developed a prac- 
t i c a l  correlat ion for  the  heat t ransfer  coef f ic ien t  f o r  h e l i c a l  fog 
flow i n  a Rankine b o i l e r  using a s ta t ionary  Leidenfrost model. The 
present analysis  w i l l  provide a veloci ty  correction f ac to r  which 
w i l l  account fo r  t he  r e l a t i v e  veloci ty  t h a t  e x i s t s  between t h e  
drop and the  supporting surface.  

LIST OF SYMBOLS 

A area of  drop 

A" dimensionless area of  lower surface (see t a b l e  I) 

B1,2 constants, see tab le  I1 

'1,2, ... 8 
a r b i t r a r y  constants 

spec i f ic  heat a t  constant pressure 

dimensionless function defined by equation (3) 

'P 

F 

f 

dimensionless M c t i o n  defined by equation (5) 

rad ia t ion  fac tor ,  

(reference 1) 

coef f ic ien t  of gravity 

grav i ta t iona l  constant (conversion constant between 
mass and force  uni ts)  

heat t ransfer  coefficient on s ta t ionary  surface 

t o t a l  heat t r ans fe r  coef f ic ien t  



h* dFmensionless heat t ransfer  coef f ic ien t  ( see  t a b l e  I) 
* (conduction mode only) 

z 

' r J  hs evaluated a t  V/E 

constant, equal t o  1/2(1 - 36' c,/u) 
thermal conductivity 

hS 

K 

k 

L length, see f igure 4 

2 average drop thickness 

2* dimensionless average drop thickness, see t ab le  I 

n correction f ac to r  

P s t a t i c  pressure 

reference pressure 

F'randtl number, 9 
radius  of drop 

k 'r 

r 

T temperature 

Tw w a l l  temperature 

TS sa tura t ion  temperature 

m temperature difference, Tw - Ts 
time t 

t" dimensionless time, see table  I 

U veloc i ty  of p la te  r e l a t ive  t o  drop 

dimensi-less ve loc i ty  defined by equation (4 )  

vapor ve loc i ty  in  x direct ion 

volume of drop 

U* 

U 

V 
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‘t’ 

dimensionless volume of drop, see table I 

vapor ve loc i ty  i n  y-direction 

half side of model, see figure 4 

distance coordinate 

dis tance coordinate 

d is  tance coordinate 

constant given by equations ( A 2 1 )  and ( A 2 2 ) ,  a l s o  

see bottom table I1 

P2 = C4 

vapor gap thickness 

l i qu id  emissivity 

l a t e n t  heat  of vaporization 

modified heat of vaporization, A* = A 1 + 20A 
\ I 

from reference 6 

v i scos i ty  

vapor densi ty  

l i qu id  densi ty  

surf ace tens  ion 

Boltzmann constant 

l a t e n t  t o  sensible  heat ra t io .  , equation ( A 2 7 )  

stream function 

s ta t ionary  stream function 

Couette flow stream function 

METHOD OF ANALYSIS 

The experimental measured vaporization time of a d i sc re t e  l i qu id  
drop i n  Leidenfrost bo i l ing  can be estimated by a d i r e c t  integrat ion of 
an energy balance on the  drop: 
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‘U’ 

where the  t o t a l  heat t r ans fe r  coeff ic ient ,  %, and the  drop area 
are dependent on t h e  volume V of l i qu id  t h a t  exists a t  any t i m e  t. 
I n  equation (l), the  t o t a l  heat-transfer rate t o  the  drop, represented 
by the r i g h t  s ide of equation (l), is  set  equal t o  t h e  mass evapor- 
a t i o n  rate %imes the  l a t e n t  heat of vaporization. 
course, is  t o  r e l a t e  hT and A t o  t h e  propert ies  of t he  l i qu id  and 
vapor, p l a t e  temperature, and the  environmental conditions surround- 
ing t h e  drop. 

A 

The problem, of 

The mechanism fo r  energy transfer t o  the  drop i s  assumed herein 
(see appendix A)  t o  be conduction across the  vapor f i l m  ( i n  creeping 
laminar flow) and radiat ion t o  both the  top and lower surface. Con- 
duction and d i f fus ive  evaporation from the  upper surface and sides of 
t h e  drop were neglected. 
i s  low as i n  metastable boi l ing  ( re f .  ll), di f fus ive  evaporation can 
be extremely important, as B e l l  ( re f .  3 and 9 )  points out and as was 
ve r i f i ed  experimentally by Wachters ( r e f .  10). However, t h e  temper- 
ature differences between t h e  p la te  and t h e  drop are assumed t o  be 
very high i n  t h i s  problem. Also, t h e  conduction under t h e  drop i s  
much greater  i n  t h i s  problem because of ve loc i ty  e f fec ts .  

If the  vapor concentration above the  drop 

Thus, the  
assumption concerning 
i n  t h i s  problem. 

In  addition, t h e  
s ions  i n  t a b l e  I w i l l  
graphs i n  reference 1 
However, f o r  the  sake 
w i l l  be neglected. 

diffusive evaporation w i l l  be less r e s t r i c t i v e  

shape of the drop as described by t h e  expres- 
be assumed independent of velocity.  
show t h a t  the drop shape depends on velocity.  
of mathematical s implici ty ,  these deviations 

Photo- 

With t h e  lat ter assumptions, only the  heat t r a n s f e r  coef f ic ien t  
becomes ve loc i ty  dependent. 
times as a function of p l a t e  velocity, the  following s teps  a r e  re- 
quired 

coeff ic ient .  

re la t ionships  from t ab le  I i n t o  the energy balance, equation (l), 
and in tegra te  t o  f ind  t h e  vaporization time of t he  drop. 
The la t te r  s t e p  is  performed i n  the next sect ion while the  first 
s tep,  t h a t  of determining t h e  heat t r ans fe r  coeff ic ient ,  is performed 
i n  t h e  appendix. 

Thus, t o  determine t h e  vaporization 

(1) Determine the  e f f ec t  of veloci ty  on t h e  heat t r ans fe r  

( 2 )  Subst i tute  t he  heat t ransfer  coef f ic ien t  and the  geometric 

To simplify the  der ivat ion of t h e  heat t r ans fe r  coeff ic ient ,  t he  
drop is  represented by an equivalent square shape as shown i n  f i g -  
ure 4. The area of t h e  square is set  equal t o  t h e  c i r cu la r  areas  
l i s t e d  on t ab le  I. A constant gap thickness i s  assumed beneath t h e  



drop. N o  flow is  assumed in  the  z direct ion;  however, later a cor- 
rec t ion  is made for  the  f l o w  in  the z di rec t ion  (see eq. ( A 3 3 )  ) .  
The physical properties are assumed constant and evaluated a t  t h e  f i l m  
temperature. A l s o ,  the  medium surrounding t h e  drop is assumed t o  be  
saturated vapor and the  vapor pulled beneath t h e  drop by the  ac t ion  
of t h e  moving p l a t e  is  assumed t o  have the  same temperature p ro f i l e s  
as t h a t  which e x i s t s  beneath t h e  drop. With these assumptions, t h e  
heat t r ans fe r  coeff ic ient  derived in  t h e  appendix, equation ( A 3 4 ) ,  
is  

where F as given i n  equation ( 2 )  a s  

F = ( 2 X  - l)(Pr~)1/2 u* 
where K is an integrat ion 
t h e  dimensionless ve loc i ty  

U 

Here, hz represents 

constant t o  be evaluated by experiment and 
given i n  equation (3) is  

the  dimensionless heat  t r ans fe r  coef f ic ien t  
t.0 a s ta t ionary  drop i n  Film boiling. The expressions f o r  hg are 
given i n  t a b l e  I. The denominator i n  equation ( 2 )  represents a the-  
o r e t i c a l  correction f ac to r  which accounts f o r  t h e  e f f ec t  of ve loc i ty  
on the heat t r ans fe r  coefficient.  The theo re t i ca l  F f ac to r  con- 
t a i n s  t h e  ve loc i ty  dependent terms while U* represents t h e  char- 
a c t e r i s t i c  dimensionless velocity.  

Empir i ca 1 Velocity correction 

For la rge  ve loc i t ies ,  the  theo re t i ca l  heat t r ans fe r  coef f ic ien t  

This seems t o  be incorrect ,  a t  
is  proportional t o  the  half  power o f  t h e  ve loc i ty  a s  a combination of 
equations (3) and ( 4 )  w i l l  show. 
least f o r  t h e  range of data given in  reference 1. 
w a s  n e c e s s a r y t o  modify F in  an empirical fashion. A power f ac to r  
n i s  now introduced in to  equation (3) t o  give 

Consequently, it 
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T h i s  correction f ac to r  w i l l  be carr ied i n t o  the  next sec t ion’ to  
solve f o r  t h e  vaporization t i m e .  

ANALYSIS OF VAPORIZATION TIMES 

Equation (1) can be conveniently wr i t ten  i n  dimensionless form. 
Expressing h,r, V, A, and t i n  equation (1) i n  terms of t he  dimen- 
s ionless  forms ( l i s ted  i n  t a b l e  I) gives 

The t o t a l  heat  t r ans fe r  coefficient 
t heo re t i ca l  
mechanism. The re la t ionship  between he and h* is  

h,j has been replaced by the 
h*, equation ( Z ) ,  which considers only the  conduction 

h* h$ = f ( 7 )  

where f represents  a radiat ion factor .  The f ac to r  f i s  defined 
i n  t h e  l i s t  of symbols and derived i n  references (1) and ( 2 ) .  This 
f ac to r  considers radiat ion t o  bo th  the  top  and bottom of the  drop. 
The f f ac to r  w a s  absorbed in to  the def in i t ion  of t*. 

Equation ( 6 )  can now be integrated for  t he  various domains of 
volume V* defined i n  t a b l e  I. Because of t h e  complexity of equa- 
t i o n  ( Z ) ,  a closed form solution could not be  obtained. 
evaluating t h e  function F a t  a reference volume of V*/Z i n  t he  
volume range of i n t e re s t ,  a simple closed form expression for t he  
vaporization time w a s  obtained. 
qu i te  surpr is ingly,  correlated the experimental data b e t t e r  than a 
niiriiber of more complicated integration techniques. 

However, by 

The reference volume technique, 

Subst i tut ing the  value of h* from equations ( 2 )  and (5) along 
with hz, 2* and A* from tab le  I in to  equation (6 )  and performing 
the  integrat ion f o r  t h e  various volume domains shown i n  table I gives 
t h e  r e s u l t s  tabulated i n  t a b l e  11. 

The equations f o r  t h e  vaporization times, t*, i n  t a b l e  I1 are 
of t h e  same f’unctional form as that  i n  t a b l e  I f o r  the  s ta t ionary  
case. In  t h i s  case, however, V* is  replaced by a velocity-corrected 
pseudo-volume V+ given i n  the  l a s t  column i n  t a b l e  11. For the  
case when U = 0, the  dimensionless ve loc i ty  U* i s  zero. Thus, 
Fn is zero and t h e  pseudo volume @ is iden t i ca l  t o  V*. 

The integrat ion f o r  V* greater than 0.8 requires  t h a t  t he  
integrat ion be broken up i n t o  two ranges s ince t h e  forms of equa- 
t i o n  ( 6 )  are d i f fe ren t  i n  each volume regime. Consequently, f o r  
V* greater  than 0.8, t h e  integration is  from V* t o  0.8 and from 
0.8 t o  zero. A similar approach is used for V* grea te r  than 155. 
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Breaking up of t he  integrat ion leads t o  the  constants B1 and B2 
l i s t e d  below t ab le  11. Of course, a d i f fe ren t  reference volume is 
used f o r  each volume range. 

SIGNIFICANCE OF PSEZTDO VOLUME V'+ 

When a drop of  l iqu id  with dimensionless volume V* is placed 
on a s ta t ionary  plate ,  t he  dimensionless vaporization t i m e  can be 
estimated from t h e  formulas given i n  t a b l e  I. However, if t h e  p l a t e  
were given a ve loc i ty  with respect t o  t h e  drop, t h e  a c t u a l  vapori- 
zat ion t i m e  would be much smaller than t h e  vaporization time pre- 
d ic ted  f r o m t h e  s ta t ionary  equations, as deduced from figure 3. 

The general expressions for s ta t ionary  vaporization time, how- 
ever, can s t i l l  be used in  the case where a r e l a t i v e  ve loc i ty  e x i s t s  
between the  drop and the  plate. Equations i n  t a l l e  I1 indicate  t h a t  
a smaller pseudo dimensionless volume if placed on a s ta t ionary  
surface would evaporate i n  the  same amount of  time as a l a rge r  real 
volume V* which is  placed on a moving surface. 

V+ 

COMPARISON O F  EXPERIMENT TO THEORY 

The experimental data of reference 1 was correlated by opt i -  
mizing the  value of K i n  equation (3) and n i n  equation (5) 
t o  give the  bes t  f i t  o f  t h e  data. The integrat ion constant K w a s  
1.3 while t he  veloci ty  correction parameter n was 0.4. A s  seen i n  
figure 5, these values cor re la te  the data  qui te  n ice ly  with a 
standard deviation of only 4.5 percent. 

The value of n equal t o  0 .4  indicates  t h a t  t h e  heat  t r ans fe r  
coef f ic ien t  is a function of velocity t o  the  0 . 2  power. 
c lose ly  with t h e  experimentally determined values of 0 . 1 7 1  and 
0.227 l i s t e d  i n  reference 1. 

This agrees 

The major advantage o f  t h e  present semi-theoretical  correlat ion 
as compared t o  the  purely empirical correlat ion given i n  reference 1 
is t h e  poss ib i l i t y  that t h e  dimensionless groups and constants would 
be universal  and apply t o  a l l  fluids.  
a t  t h e  University of Florida by Charles Wood fo r  Ethanol, Carbon 
Tetrachloride and Benezine indicate t h a t  t h e  present cor re la t ion  is 
appl icable  t o  a w i d e  range of f luids .  

Some preliminary data taken 

CONCLUSIONS 

The ve loc i ty  e f f ec t s  on the  vaporization t i m e  can be accounted 
f o r  by  the  introduction of a pseudo volume 
groups and constants predicted by a r e l a t i v e l y  simple flow model. 

V+ using t h e  property 
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APPENDIX - HEAT TRANSFER COEFFICIENT 

The heat t ransfer  coeff ic ients  from the  p l a t e  t o  the  drop are 
obtained by solving the  momentum and energy equations f o r  flow and 
heat t r ans fe r  i n  t h e  vapor gap beneath the  drop. 

For t h e  assumptions noted i n  the  body of t he  report  (see 
Method of Analysis Section) t he  governing d i f f e r e n t i a l  equations a r e  

Momentum : 

Continuity : 

au + aw ax 3 y r = O  

Energy: 

Boundary Conditions: 

y = o  u = u  w = o  T = Tw (A51 

y = 6  u = o  w = w(6) T = T  S (A6)  

x = +x P = P o  a t  y = 6  047)  

I n  boundary condition ( A 5 ) ,  the  drop i s  f ixed and the  p l a t e  is  assumed 
t o  move with ve loc i ty  U, a s  might be approximated by t h e  experiment 
depicted i n  figure 2. 

S t a t i c  Force Constraint: 

r” 

a t  y = 6  
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In te r face  Energy Balance (Neglecting Radiation) : 

L. 

8' 
The d i f f e r e n t i a l  energy equation has been replaced by t h e  simple 

conduction equation (A4); hawever, a correction f o r  t h e  convection 
heating of t h e  vapor w i l l  be made later using t h e  results of refer- 
ence 6. Equations ( A 8 )  and ( A 9 )  are addi t ional  and necessary con- 
s t r a i n t s  which couple the  energy and momentum equations. Equation ( A 8 )  
requires  t h a t  t he  in t eg ra l  of pressure beneath t h e  drop be equal t o  
t h e  drop's weight. 
arop surface must be balanced by the heat conduction across the  gap. 
The bulk l i qu id  is assumed t o  be a t  t h e  sa tura t ion  temperature. 

Equation (A9)  says t h a t  l a t e n t  heat release a t  t h e  

Boundary condition ( A 7 )  deserves some spec ia l  comment. Using a 
uniform gap model t o  predict  the hea t  t r ans fe r  coef f ic ien t  w i l l  re- 
quire  t h a t  t h e  pressure at the  front (-x) and t h e  rear (+X) be d i f -  
fe ren t .  A s  w i l l  be  shown l a t e r  t h i s  pressure difference is extremely 
s K a l 1 .  
(see f ig .  2 ( d ) )  it is conceptually possible t h a t  such a pressure d i f -  
ference could occur, although such a pressure difference can be con- 
s idered pseudo. A model could be developed i n  which the  pressure is 
equal a t  t h e  f ront  and r ea r  by using the  s l i d e r  bearing model (ref. 
page 98).  I n  t h i s  case t h e  gap thickness would be  a l i nea r  function 
of posi t ion i n  which t h e  slope could be determined by some added 
constraint  o r  experiment. However, t he  uniform gap model w a s  chosen 
because of i ts  s implici ty  and because it does lead t o  a good corre- 
l a t ion .  

Because of the  complicated flow pa t te rn  around the  drop 

12, 

Momentum Equations 

The momentum equations are eas i ly  solved by use of  t he  stream 
functions : 

u = - i $  

w=+g 
Using these  def in i t ions  the  governing momentum equations can be com- 
bined i n t o  a s ing le  equation with continuity iden t i ca l ly  s a t i s f i e d  
(ref. 12, page 59)': 
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The problem now is 
f ies  equation (A12)  and 

L 

The stream function $, 

simply t o  f ind a stream function which satis- 
the  boundary conditions. To f ind  $, assume 

4f = $,(X,Y) + $JY) ( A 1 3 1  

i s  the  s ta t ionary stream funct ion which would 
r e s u l t  if a s t a t i o n a r y p l a t e  supported the  drop, while 
stream function representing Couette flow. 
order t o  s a t i s f y  the  boundary conditions. 

is a 
They are superimposed i n  

Assuming t h a t  t h e  var iables  are separable, gives 

= x(cl + c2y + c g 2  + C4Y3) 
4fS 

while can be  found by direct integrat ion of equation ( A 1 2 )  

Combinhg the  two stream functions, equations (A14) and (A15) i n  
equation ( A 1 3 ) ,  determining the  veloci t ies  from equations (A10) and 
( A l l ) ,  and applying t h e  boundary conditions i n  equations (A5) and (A6) 
yields 

Not a l l  t he  constants C I S  were determined from t h e  boundary 
conditions. The undetermined constants have been relabeled p2 and 
K (see monemclature). The constant p2 and t h e  gap thickness 6 
w i l l  be determined l a t e r  by applying equations ( A 8 )  and (A9). The 
constant K w i l l  be discussed l a t e r  i n  t h i s  appendix. 

Pressure Distribution 

Knowing t h e  ve loc i t ies  under the drop allows us t o  determine the 
pressure d i s t r ibu t ion  beneath t h e  drop. 
d i s t r ibu t ion  back i n t o  t h e  momentum equations gives 

Subst i tut ing the  ve loc i ty  



1 2  

L 

'U' 

I -  

In tegra t ing  t h e  above equations subject t o  the  boundary conditions 
gives 

Later, K w i l l  be taken as .1.3 (reasons t o  be  given la ter) .  This 
w i l l  lead t o  a pressure s l i g h t l y  below atmospheric (approximately 
0.001 atmospheres) a t  t h e  leading edge of t he  drop. 

Coupling Momentum and Energy 

Subst i tut ing t h e  expression f o r  pressure i n t o  t h e  s t a t i c  pres- 
sure balance, integrat ing,  and solving f o r  p2 gives 

where L w a s  set  equal t o  2X, tha t  is, the  drop 

The parameter p2 can a l s o  be determined by 

was assumed square. 

t h e  in t e r f ace  energy 
constraints .  Evaluating w a t  y = 6 i n  equation ( A 1 7 ) ,  subs t i t u t ing  
t h i s  value of w i n to  t h e  interface energy balance, equation (A9), 
and solving f o r  p 2 gives 

The momentum and energy equations are coupled b y  equating equa- 
t i o n s  (AZ1) and (A22) t o  give a f t e r  a l i t t l e  rearranging 

(A23)  

Solving f o r  t h e  gap thickness 

F = (2K - 1) 

o r  iden t i ca l ly  after a l i t t l e  

gives 

u[& p k ATgV 

manipulation 
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where Pr i s  the  Prandtl number (see symbols) and 

(see  eq. ( A 3 1 )  f o r  r i g h t  hand expression) 
The l a t e n t  heat, A, i n  equations (AZ4)  and ( A 2 7 )  has been replaced 
by an e f f ec t ive  l a t e n t  heat which i s  defined i n  t h e  l i s t  of symbols 
and derived i n  reference 6. This accounts for convection terms i n  
the energy equation in  an empirical manner. 

Length, Area, Volume Relations 

The length X and t h e  volume V, appear i n  equations ( A 2 4 )  
and ( A 2 8 ) .  
i n  t a b l e  I by t h e  following manipulations 

These parameters can be r e l a t ed  t o  the  geometrical forms 

V = A2 = ( 2 X ) 2 2  (A291  

Theref ore 

which now can be used i n  equation ( A 2 8 ) .  A l s o ,  

Heat Transfer Coefficient 

The heat t ransfer  coefficient i n  dimensionless form f o r  pure 
conduction across t h e  gap is  
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L 

where the value of 6 from equation ( A 2 4 )  was substituted into the 
first part of equation ( A 3 2 )  and V and X in equation ( A 3 2 )  were 
related by equation ( A 3 1 ) .  
the heat transfer coefficient is the same one listed in table 1 for 
the stationary drop. 

The non-dimensionalizing term used in 

For the case of zero plate velocity, equation (A32')  reduces to 

As can be seen in a comparison to the heat transfer coefficient in 
table I, (V*/A*)1/4 is within twenty percent of the stationary heat 
transfer coefficient which was derived for a symmetric circular drop. 
Thus, the effect of flow in the z direction beneath the drop shown 
in figure 5 is compensated for empirically by replacing 
by hg which yields 

(V*/A*)1/4 

This correction, however, is exact in the limit of zero plate velocity. 
The denominator represents a velocity correction factor to the sta- 
tionary heat transfer coefficient, hz. 

K-Parameter 

The value of F can not be determined as yet since it is a 
function of the unknown parameter K. 

A s  seen from equation ( A 3 4 ) ,  heat transfer coefficient increases 
for increasing values of K. At K = 1/2, however, h* equals hg 
and the velocity has no effect on the heat transfer coefficient. 
Thus, K must be chosen such that K > 1/2. 
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I n  addi t ion t o  a f f ec t ing  heat t ransfer ,  the  value of K d i r e c t l y  

This term is shown graphical ly  i n  f igu re  6. 
a f f ec t s  t he  ve loc i ty  d is t r ibu t ion ,  as given by the  second term i n  
equation (A16). 
t he  moving p l a t e  i s  the  cause of the r e a l  or pseudo pressure d i f f e r -  
ence across t h e  drop it i s  reasonable t h a t  no back flow occur; thus,  
K S 1. Consequently, K appears t o  be  bracketed i n  t h e  range 
112 < K S 1. 

Since 

The value of K w a s  determined experimentally by cor re la t ing  
t h e  da ta  of reference 1. The experimentally determined K w a s  1.3, 
as discussed i n  the  body of t h i s  report. It is qui te  remarkable t h a t  
t he  optimal value of K 
as shown i n  figure 6. 

came so close t o  t h e  upper theo re t i ca l  l i m i t ,  
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Figure 4. - Flw model. 
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Figure 5. -Total vaporization correlation for K - 1.3 and 
n = 0.4. 
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Figure 6. - Coutte flow profiles as a func- 
tion of K (second term i n  eq. (A16)). 
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